55 лет, отданных фил. ФТИ-ЛИЯФ-ПИЯФ

# Газонаполненные детекторы новейшего поколения

Представлены результаты работ по новейшим микроструктурным детекторам ИИ, в том числе собственные результаты 2019 г. Приведены примеры возможного применения новейших детекторов на БАК и ПИК.

## Часть І

## Колодезные и микроколодезные

### электронные умножители

# с резистивным анодом – новейшее достижение MPGD, на которое следует обратить особое внимание

### Детекторы, удостоенные Нобелевской премии

- <u>C.Wilson</u> в 1927 г. получил <u>Нобелевскую премию по физике</u> за изобретение к.В. Впоследствии уступила место пузырьковой камере
- <u>С.Powell</u> в 1950г. был награждён <u>Нобелевской премией</u> за разработку методики я. фотоэмульсии и открытие в 1947 г. пимезона с помощью этой методики
- <u>G.Charpak. Нобелевская премия 1992 г.</u> Многопроволочные камеры (MWPC), разработанные в 1968 г., CERN
- <u>...что-нибудь достойное появилось?</u>

# Быстродействие MWPC определяет пространственный заряд положительных ионов, возникающий вокруг проволочек

arXiv:0909.0242v1 Sep 2009



### **Micro-Pattern Gaseous Detectors**



R. Bellazzini, M. Bozzo, A. Brez, G. Gariano, L. Latronico, N. Lumb, A. Papanestis, G. Spandre, M.M. Massai, R. Raffo, M.A. Spezziga, The WELL detector, Nucl. Instr. and Meth. A 423, pp 125-134, 1999.





### Все началось с MSGC... Быстродействие увеличено в 100 раз ! СЕРЬЕЗНЫЕ ПЕРСПЕКТИВЫ





Typical distance between wires limited to 1 mm due to mechanical and electrostatic forces



### First publi in 1988 (A. Oed)

A. Oed Nucl. Instr. and Meth. A263 (1988) 351. A.Kashchuk (PNPI)

### Проблема MSGC - ПРОБОИ



## F.Sauli (1997)

#### Детектор со сквозными отверстиями и технология запатентованы многократно (CERN)

Radiation detector of very high performance F.Sauli (1997)



#### Быстродействие GEM не хуже MSGC Размеры существенно увеличены - до метра, технология проще



26/11/2019

A.Kashchuk (PNPI)

### Проблема GEM - ПРОБОИ



### Вклад ПИЯФ в повышение надежности - впервые

B. Bochin, A. Kashchuck, V. Poliakov and A.A.Vorobyov, "X-ray tests of Double and Triple-GEM detectors for the LHCb inner tracker", LHCb note 98-068, 1998 [Online]. Available: http://doc.cem.ch//archive/electronic/cem/others/LHB/public/lhcb-98-068.pdf



предложен в ПИЯФ в 1998 г.



Б.В.Бочин, А.П.Кашук, Б.Г.Комков

Исследование детектора на основе газового электронного умножителя GEM



*F.Sauli* et.al. NIM A470, 2001 (CERN)

аналогичный результат получили спустя 3 года в 2001 г.

### Вклад ПИЯФ в повышение надежности GEM



### Впервые сделан важный вывод (1998 г.)

#### НАДЕЖНЫМ детектором для физики высоких энергий является Triple-GEM

Без альфа-частиц в газе нет пробоев в обеих структурах.



Впервые в 1999 г. получен лучший результат: временное разрешение σ=5.9 нс (F.Sauli σ=12 нс)

В 1999 году на пучке π мезонов с энергией 350 МэВ в PSI





About 1000m<sup>2</sup> of GEM foils for stations 1 and 2 of CMS muon detector

#### 216 triple GEM detectors

| Station | Nbr of modules  | Module area<br>(containing<br>rectangle) | Total Nbr of<br>modules<br>(w/o spares) | Total GEM foil area<br>(3ple GEMs) | Manufacturing plan   |
|---------|-----------------|------------------------------------------|-----------------------------------------|------------------------------------|----------------------|
| GE1/1   | 18x2x2=72       | ~0.43m <sup>2</sup> (440x990)            | 72                                      | $0.43x72x3 = 93m^2$                | Prototypes 2013+2014 |
|         |                 |                                          |                                         |                                    | Completion 2016+1017 |
| GE2/1   | 36x2=72 (long)  | ~2.4m <sup>2</sup> (1251x1911)           | 144                                     | (2.4+1.6)x72x3 = 864m <sup>2</sup> | Prototypes 2013+2014 |
|         | 36x2=72 (short) | ~1.6m <sup>2</sup> (1251x1281)           |                                         |                                    | Completion 2016+1017 |



### **USA**, 2013 Triple-GEM $1.5 \times 0.5 \text{ m}^2$

**GEM support frame design:** 



#### GEM foil:

- ⇒ Segmentation on both side unlike previous large GEM chambers
- ⇒ A short sector during operation would not make the whole layer inoperable ⇒ but only dead sector
- ⇒ Limited voltage drop in the divider at high particle rate



A.Kashchuk (PNPI)

## A является ли GEM "Radiation detector of <u>very high performance</u>" как заявляет F.Sauli

### "Классический" GEM a la Sauli



Electron avalanche in triple-GEM detector

## THGEM (thick GEM) – пробои



E. V. Atkin<sup>a\*</sup>, S. S. Volkov<sup>a,b</sup>, A. G. Voronin<sup>c\*\*</sup>, V. V. Ivanov<sup>a,b</sup>, B. G. Komkov<sup>b</sup>, L. G. Kudin<sup>b</sup>, E. Z. Malankin<sup>a</sup>, V. N. Nikulin<sup>b</sup>, E. V. Roshchin<sup>a,b</sup>, G. V. Rybakov<sup>b</sup>, V. M. Samsonov<sup>a,b\*\*\*</sup>, O. P. Tarasenkova<sup>b</sup>, V. V. Shumikhin<sup>a</sup>, A. V. Khanzadeev<sup>a,b</sup>, and E. A. Chernysheva<sup>b</sup>

- Micromegas + GEM (MG)
- Micromegas + Thick GEM (MTG)
- Thick GEM + Thick GEM (DTG)

- GEM + GEM (DG)



# РЕЗИСТИВНЫЙ АНОД



#### <u>Метод известен с 1986 г.</u> см. G. Bella et al. Thin gap chamber // NIM A252 (1986) **Resistive film for 2D readout** .. внедряется в колодезный ГЭУ через 20 лет

#### Thick GEM-like (THGEM) Detectors and Their Possible Applications

R. Chechik, M. Cortesi, A. SNIC Symposium, Stanford, California -- 3-6 April 2006



#### Простая резистивная пластинка в качестве анода





# The µ-RWELL architecture



Bencivenni G., et al. 2019. JINST. 14. P05014.



The µ-RWELL amplification stage

#### **METHOD OF MANUFACTURING** R.de Oliveira (patent 2008, CERN)

### single resistive layer w/edge grounding

Copper layer 5 μm Kapton layer 50 μm

DLC layer: 0.1-0.2 μm (10-200 MΩ/□)

DLC-coated kapton base material

Insulating medium (50 µm)

PCB (1.6 mm)

DLC-coated base material after copper and kapton chemical etching (WELL amplification stage)

21/06/2018

2

Topical Workshop on MPGD stability & RD51 Meeting - TUM, Munich,



### HR layouts: the Silver grid G.Bencivenni, et al. 2019. JINST. 14. P05014.



The SG is a simplified HR scheme based on a Single Resistive layer with a 2-D grounding by means a conductive strip lines grid realized on the DLC layer.

The conductive grid lines can be screen-printed or etched by photo-lithography (using the DLC+Cu deposition technology developed at USTC – Hefei).

The conductive grid can induce instabilities due to discharges over the DLC surface, thus requiring for the introduction of a small dead zone on the amplification stage.

## High rate $\mu$ -RWELL Double resistive layer

G.Bencivenni, et al. 2019. JINST. 14. P05014.



Эта работа проводится для LHCb-muon, т.к. для CMS-muon требуется меньшее быстродействие



### Достижения µ-RWELL (CERN+LNF, Италия) 2017-2019 г.г.

С 2014 г. ведется огромная работа

- ... вкладываются большие ресурсы в технологию и создание прототипов
- ... тесты проводятся на интенсивном  $\pi$ -мезон. пучке в PSI
- ... исследуется радиационное старение на GIF++ (CERN)
- ... море публикаций, пропаганда

Bencivenni G., et al. 2019. JINST. 14. P05014.



#### HR layouts performance: the rate capability

### Пространственное разрешение по X и Y $\sigma \sim 70$ мкм



- Avalanche voltage: 555V
- Y position resolution(Top layer): 68um
- X position resolution(Bottom layer): 66um







A.Kashchuk (PNPI)

# CMS GE2/1 sector µRWell prototype





M4 uRWell

#### H4 test beam with 150 GeV muons:

- Voltage scan (amplification scan)
- Uniformity scan across the surface of the detector at 530 V (~12000 gain, still to be conditioned)
- Small high rate prototype reached a gain of ~10<sup>5</sup> and a rate of ~700 khz/cm<sup>2</sup>

The excellent results obtained demonstrate the great collaboration between INFN-Eltos and Rui de Oliveira's lab

GE2/1 20<sup>0</sup> sector with M4 μRWells (2 m height, 1.2 m base)



bistance from the center of

IAS 2018 - Muon detectors and MPGDs - Paolo Giacomelli

### Micro-RWELL gaseous detector

G. Morello, et al. (15 авторов) 55th International Winter Meeting on Nuclear Physics 23-27 January, 2017. Bormio, Italy





### CMS GE1/1 µRWell: GIF++ ageing test



### $\mu$ RWell prototypes exposed inside the GIF++



## GE2/1 µRWell: cost estimate

|                                                       | Unit cost | Total (CHF)  |              | Estimate from    |
|-------------------------------------------------------|-----------|--------------|--------------|------------------|
| PCB Boards                                            |           |              |              |                  |
| ReadOut (1/8 of GE21 RO)                              | 218       | 1744         | A            | ELTOS/CISTELAYER |
| Drift Board (one single board)                        | 763       | 763          |              | MDT              |
| Panasonic Connectors + soldering                      | 5         | 1000         |              | CERN catalogue   |
|                                                       |           |              |              |                  |
| RWELL Foil *                                          |           |              |              |                  |
| Base Material (1/4 of GE21) (no mass production cost) | 180       | 720          |              | CERN             |
| DLC (1/4 of GE21) (no mass production cost)           | 300       | 1207         |              | CERN             |
| Gluing RO+Kapton (1/8 of GE21)                        | 109       | 3            |              | ELTOS/CISTELAYER |
| Etching (1/4 of GE21) (no mass production cost)       | 1000      |              |              | CERN             |
|                                                       |           |              |              |                  |
|                                                       |           |              |              |                  |
| GE21 mechanical structure                             |           | 1799         |              | Meroni & Longoni |
|                                                       |           |              |              |                  |
| GE21 chamber total cost                               |           | 12098        |              |                  |
| GE21 72 chambers total                                |           | 871020       |              |                  |
|                                                       |           |              |              |                  |
| HV System (72 uRWELL) RADIALL system **               | unit cost | 8 ch + cath. | 4 ch + cath. |                  |
|                                                       |           |              |              |                  |
| HV module AG550-24 ch. RADIALL                        | 5188      | 77826        | 41507        | CAEN             |
| HV cable (€/m)                                        | 5.5       | 8993         | 4796         | TECHNIKABEL      |
| HV connector (+ pins) €                               | 60+2.5    | 5886         | 3139         | CERN             |
| HV PS SY4527                                          | 6431      | 6431         | 6431         | CAEN             |
| HV filters (€)                                        | 5         | 3924         | 2093         | ELTOS/CISTELAYER |
|                                                       |           |              |              |                  |
| Subtot.                                               |           | 103060       | 57966        |                  |
|                                                       |           |              |              |                  |
| TOT. (HV system +72 uRWELL)                           |           | 974080       | 928986       |                  |

\* Possible reduction of 30% on the "RWELL foil", corresponding to a 20% reduction on the final detector cost

\*\* Possible discount of 10% on the HV system, corresponding to a 2% on the final system Not included in the table the common costs to the GEM option (GEB, konean kapton, etc.)

### Cost ~<u>1/2</u> GEM
## GEM vs. WELL

- Высокое быстродействие GEM (10<sup>8</sup> Гц/см<sup>2</sup>) → при определенных условиях WELL не уступает GEM. <u>Но дальше у WELL преимущества, у GEM - недостатки!</u>
- Ненадежный, требуется каскадирование (Triple-GEM )→ надежный
- Требуется сегментация электродов → не требуется
- При одинаковом усилении → сигнал больше в 5-10 раз
- Необходимо натяжение пленки (~6 кг/сторона) → нет
- Высокие требования к планарности электродов → нет
- 6 напряжений HV-питания (Triple-GEM) → 1 при том же усилении
- HV- строгая синхронность ramping-up/ramping-down  $\rightarrow$  безразлично
- Cymmaphoe HV (Triple-GEM)  $\rightarrow$  mhoro ниже (single gap)
- Маленькое плато эффективности в зависимости от напряжения → большое
- Индукционный зазор + транспортные зазоры → нет
- Диффузия (Triple-GEM )/простр. разрешение → меньше/лучше
- Стоимость (Triple-GEM)  $\rightarrow$  меньше в 2-3 раза
- Больше вещества (радиационная длина) → меньше в 3 раза
- Ошибка параллакса → проще изгиб в цилиндр. и сферическую полверхность для исключения параллакса
- Фронт выходного импульса и длительность импульса → короткие фронт и импульс

## Без индукционного зазора сигнал и эффективное усиление существенно больше



### Натяжение пленок Triple-GEM, CMS



### CAEN HV rumping-up/rumping-down for Triple-GEM, CMS

### Необходимо 7 потенциалов СИНХРОННО





### <u>Часть II</u> Собственные достижения в колодезном ГЭУ с АПУ-анодом в 2019 г.

### Алмазоподобный углерод



### Micro-Pattern Gaseous Detectors (MPGD)

### Minsk-Protvino-Gatchina-Dubna

Неформальная коллаборация из представителей 7 институтов, Координатор А.К.

#### Рабочее место



### Поверхность DLC (электронный микроскоп) Пленка, нанесенная в Минске

- Особенности АПУ гладкая и чистая поверхность, высокая твердость, высокая рад.стойкость, прочное удержание проводящего графита в алмазе (диэлектрике) за счет
- кристаллической природы материала углерод в разных формах (sp2/sp3 гибридизация, ~50%)
- Рекордная для твердых тел теплопроводность алмаза 2000 Вт/м·К, (у эпоксидной смолы в 10 тыс. раз хуже 0.2 Вт/м·К,
- см. резистивное покрытие TGC, ATLAS), что исключительно важно при пробоях по
- графиту!





## Первые импульсы с колодезного ГЭУ с резистивным DLC-анодом





26/11/2019

A.Kashchuk (PNPI)

Ноябрь 2018 г.

### Коэффициент газового усиления (КГУ)



### Сравнение пленок, выполненное на источнике Fe-55



### Сравнение пленок, выполненное на источнике Fe-55

DLC 500 M $\Omega$ / $\Box$ 



### Эквивалентная схема АПУ



## Эвакуация электронов с резистивной поверхности на металлическую





### Первые импульсы с колодезного ЭУ с резистивным DLC-анодом



Ноябрь 2018 г.

#### Реконструкция сигналов на электродах

### $y(t) = x(t) \oplus h(t)$

Если  $x(t)=\delta(t)+1(t)$ , то наблюдаемый сигнал неплохо описывается

Функция растекания заряда по резистивной поверхности не есть 1(t), а спадающая функция



#### Реконструкция сигналов на электродах

### $y(t) = x(t) \oplus h(t)$

Если убрать δ(t), то в реконструируемом сигнале сильно затянут фронт, чего нет в реальном сигнале



Погрешность реконструкции

## В конструкции четыре RC-структуры с одинаковым погонным R и разными C

Треугольники импедансов



3-й электрод это стрип Х или Ү

## Из эквивалентного преобразования импедансов находим НЧ и ВЧ модели



p=jω, τ=RC, h=1/τ τ =1 мкс, f<sub>\*</sub> ~300 кГц

# Заряд не растекается мгновенно: эволюция изменения плотности заряда на резистивной поверхности тонкой пленки как функция координаты r (мм) и времени t (нс)



Эволюция импульса δ(х) в уравнении типа Г–К, к. Жуковский, мгу №4, 1740301 (2017)

### Динамическая емкость



### Типовая схема компенсации полюса нулем

...встраивается в каждый канал ASIC для укорочения выходного импульса



$$V2 = \frac{V1}{1+pT} \frac{R2}{R2 + \frac{R1\frac{1}{pC}}{R1 + \frac{1}{pC}}} = k \frac{V1}{1+pT} \cdot \frac{1+pT1}{1+kpT1}$$
$$T_1 = R1C, T_2 = kT_1 \ll T1 \quad k = \frac{R1}{R1+R2} \approx \frac{R1}{R2} \ll 1$$

### Зачем нужна компенсация "хвоста"?



### ВЫСОКАЯ НАДЕЖНОСТЬ

Спектры Fe-55 слева, измеренные при КГУ=30 тысяч сразу при включении,

а справа

после выдержки в режиме пробоев ~ 0.5 млн. пробоев

<u>C=1000 пФ, V=1435 В</u>

Толщина DLC 120 нм ( $R \approx 25$  МОм/□).



Пленка DLC работала не меньше 7-8 часов с пробоями...

Визуально и под микроскопом никаких изменений не замечено.

Сопротивление не изменилось.

+++

Резистивный каптон (черный) = органика в аналогичном *сетапе* за это время прогорел насквозь.

### <u>Часть IV</u> Примеры применения колодезного ГЭУ на БАК и ПИК

### Frascati (LNF): financial Request (µ-RWELL, 2017)

GOAL:n. 2 M2R1 - like size - 25x30 cm²0.6x0.8 cm² pad size1500 chs/gap, partially instrumented w/VFAT2

**Costs Estimate:** 

| DLCed foil 50 µm thick (ampl.stage + 1 <sup>st</sup> res-layer)          |             |
|--------------------------------------------------------------------------|-------------|
| + 25 μm thick 2 <sup>nd</sup> res-layer(Japan):                          | 1 k€        |
| Preliminary tests of double resistive-layer (on 10x10 cm <sup>2</sup> ): | <b>2 k€</b> |
| n.2 M2R1-like protos (including DRIFT electrodes & frames):              | 6 k€        |
| fee (n. 500 chs – 4 VFAT2 boards) + TURBO board:                         | <b>1 k€</b> |

10 k€ 4 k€ 8 k€

□ Missioni (contacts with TECHTRA/ELTOS) :

□ Test Beam (4 people – 2 weeks)

### M2/3R1 LHCb-muon upgrade project

based on extension of "bigap" concept by wire-OR developed at PNPI for MWPC-muon

#### Dead time reduction by reduction of the collection time with thin gap **Pulse width to be within 25 ns - bunch crossing at 40 MHz LHC**



### ПИК

### Детекторы тепловых и холодных нейтронов для дифрактометров (кольцевых, малоугловых, рефлектометров)

#### Gas-Filled Position-Sensitive Detectors of Thermal Neutrons at the Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences

#### REFERENCES

- V. Andreev, G. Ganzha, D. Ilyin, E. Ivanov, S. Kovalenko, A. Krivshich, A. Nadtochy, and V. Runov, Nucl. Instrum. Methods Phys. Res., Sect. A 581, 123 (2007).
- V. A. Andreev, E. A. Ivanov, D. S. Ilyin, S. N. Kovalenko, A. G. Krivshich, A. V. Nadtochy, and V. V. Runov, Izv. Akad. Nauk, Ser. Fiz. **72** (7), 1059 (2008) [Bull. Russ. Acad. Sci.: Phys. **72** (7), 1001 (2008)].
- V. A. Andreev, G. A. Ganzha, E. A. Ivanov, D. S. Ilyin, S. N. Kovalenko, A. G. Krivshich, A. V. Nadtochy, and V. V. Runov, Preprint No. 2780, PIYaF (Petersburg Nuclear Physics Institute, Gatchina, Leningradskaya oblast, Russia, 2008).





## Зачем 5 проволочных электродов ? когда можно 3, 2, 1 и 0 проволочных электродов !

V. Andreev and al., N.I.M A 581 (2007) 123-127



A.Kashchuk (PNPI)

### То, о чем говорилось 16-17 мая 2018 (Петергоф) СТАРО !

## Cremin connecting Russian and European Measures for Large-scale Research Infrastructures

Проект двухкоординатного детектора т.х.н. модульной конструкции без параллакса по X и Y (со сферическим изгибом детектирующей поверхности), выполненный на базе MPGD-RWELL



Усиление в отверстиях не меняется при изгибе детектирующей поверхности

### Бинарная смесь <sup>3</sup>He/CF<sub>4</sub> – низкофоновый детектор


### Сравним спектры с ионизационной камерой

Nucl. Instr. and Meth. A 581. 2007. P. 123-127.











полученные при различной ориентации первичных треков

**b** – двух несмежных пэдах,

а – распределение амплитуд импульсов на двух смежных пэдах;

#### Эффективность



#### Металлические 2D-трубки с гелием под давлением

Нет центральной проволочки - замененена цепочками отверстий

Увеличение светосилы в 10 раз

Суб-мм разрешение по Х и Ү

Без параллакса в вертикальном направлении

Высокая ремонтопригодность мульти-детектора заменой трубки...



A.Kashchuk (PNPI)

## Новые дрейфовые строу-трубки без сагитты

The  $\mu$ -wire (amplification element) is replaced to the string of  $\mu$ -holes along tube

Here the central wire is a cathode - drift electrode





# СПАСИБО за ВНИМАНИЕ